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Chiral racemicansa-zirconocene complexes can be activated
by MAO or other cocatalysts to generate excellent catalysts for
isotacticR-olefin polymerization and other stereoselective reac-
tions.1 Racemic SiMe2-bridged bis(indenyl) zirconocenes that con-
tain methyl and aryl substituents at the indenyl 2 and 4 positions,
respectively, are among the best metallocene catalysts for the pro-
duction of high molecular weight, isotactic poly(R-olefins).2 ansa-
Zirconocenes are normally synthesized by salt-elimination reac-
tions betweenansa-bis(indenyl) dianion reagents and ZrX4 or Zr-
X4L2 compounds. However, the factors that control chemoselec-
tivity (i.e. metallocene vs dinuclear products) and diastereose-
lectivity (i.e. rac/mesoselectivity) in these reactions are not well
understood, and extensive screening studies of reagents, counter-
ions, solvents, use of added ligands, and reaction conditions are
required for each case to optimize yields.3 Amine elimination
reactions ofansa-bis(indenes) and Zr(NR2)4 compounds provide
efficient routes to simpleansa-zirconocenes, but this approach
is not successful for sterically crowded cases.4 Here we report a
general, high-yield synthesis ofrac-SiMe2-bridged bis(indenyl)
zirconocenes that exploits the conformational properties of a
simple chelating diamide ligand to control diastereoselectivity.

The chelated propylene-diamide complex Zr{PhN(CH2)3NPh}-
Cl2(THF)2 (1) can be prepared by two methods as shown in
Scheme 1. The reaction of ZrCl4 and 2 equiv of Li2[PhN(CH2)3-
NPh] in toluene affords Zr{PhN(CH2)3NPh}2 as a yellow solid
in 73% isolated yield. The reaction of ZrCl4 and Zr{PhN(CH2)3-
NPh}2 in THF/Et2O (1:1 by volume) yields1 as a yellow solid
quantitatively.5 Alternatively, 1 can be prepared directly by the
reaction of ZrCl4 with 1 equiv of Li2[PhN(CH2)3NPh] in THF/
Et2O in 81% isolated yield.

A view of the molecular structure of1 which highlights the
conformation of the chelate ring is shown Figure 1.6 Compound

1 is monomeric and has approximateC2 symmetry with theC2

axis lying along the Zr- - -C(2) vector and bisecting the O(1)-
Zr-O(2) angle. The geometry at Zr is distorted octahedral and
the weak donor THF ligands are trans to the strong donor amide
groups. The Zr-N bond distances (2.082(2), 2.080(2) Å) are
normal and the N(1)-Zr-N(2) angle (91.63(6)°) is close to the
ideal octahedral value. The six-membered C(1)-N(1)-Zr-N(2)-
C(3)-C(2) chelate ring adopts a twist conformation.7 The N(1),
Zr, N(2), and C(2) atoms are coplanar to within 0.02 Å, and C(1)
and C(3) lie 0.79 Å above and below the N(1)-Zr-N(2)-C(2)
plane, respectively. This conformation places the two phenyl rings
on opposite sides of the N(1)-Zr-N(2)-C(2) plane; the C(4)-
N(1)- -N(2)-C(10) torsion angle is 145.2°.8 However, the1H
NMR spectrum of1 contains two methylene resonances for the
diamide ligand in a 2:1 intensity ratio down to-105 °C (THF-
d8), which implies that ring inversion is fast on the NMR scale
in solution.
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Figure 1. Molecular structure of Zr{PhN(CH2)3NPh}Cl2(THF)2 (1). Bond
distances (Å): Zr-Cl(1) 2.4785(5), Zr-Cl(2) 2.4565(5), Zr-O(1)
2.321(1), Zr-O(2) 2.302(2). Bond angles (deg): Cl(1)-Zr-Cl(2)
164.00(2), O(1)-Zr-O(2) 79.32(5). Torsion angles (deg): N(1)-Zr-
N(2)-C(10) -133.8(2), N(2)-Zr-N(1)-C(4) -127.8(2).

Scheme 1
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The reaction of1 with 1 equiv of the lithiumansa-bis(indenyl)
reagents Li2[SBI′](Et2O) 2a-d (2a, SBI′ ) (1-indenyl)2SiMe2

(SBI); 2b, SBI′ ) (2-methyl-1-indenyl)2SiMe2 (MSBI); 2c, SBI′
) (2-methyl-4,5-benz-1-indenyl)2SiMe2 (MBSBI); 2d, SBI′ ) (2-
methyl-4-phenyl-1-indenyl)2SiMe2, (MPSBI)) in Et2O affords the
correspondingrac-(SBI′)Zr{PhN(CH2)3NPh} zirconocenes3a-d
in >90% NMR yield (Scheme 1). The1H NMR spectra of3a-d
each contain one SiMe2 resonance, one 2-H (for3a) or 2-Me
(for 3b-d) resonance, three NCH2CH2CH2N methylene reso-
nances, and appropriate indenyl resonances consistent withC2

symmetry. Themeso isomers of 3a-d were not detected.
Compounds3c and3d were isolated in pure form as red solids
in 90% and 87% yield, respectively.

The molecular structure of3c was determined by X-ray crys-
tallography (Figure 2).9 The Zr-diamide unit in3c is structurally
similar to that in1. The twist conformation of the chelate ring,
the large C(6)-N(1)- -N(2)-C(10) torsion angle (142.8°), and
the N(1)-Zr-N(2) angle (86.77(9)°) are very similar to the
corresponding features in1. The Zr-centroid distances (2.342,
2.291 Å) and centroid-Zr-centroid angle (123.1°) are compa-
rable to those inrac-(MBSBI)ZrCl2 (2.247 Å, 127.9°).2b

A reasonable explanation for the high selectivity forrac-
metallocene products in Scheme 1 is that the twist conformation
of the Zr propylene-bisamide chelate ring constrains the two
N-Ph groups to lie above and below the N-Zr-N plane, which
accommodates therac-metallocene structure but sterically dis-
favors themesostructure (and the transition state andη5,η1-bis-
(indenyl) intermediate leading thereto).10 For comparison, the
reaction of 2c with Zr(NMePh)2Cl2(THF)2, the nonchelated
analogue of1, yields a 1/1 mixture ofrac- andmeso-(MBSBI)-
Zr(NMePh)2 along with 20% of the dinuclear species (MBSBI)-
{Zr(NMePh)2Cl}2.11 X-ray crystallographic analyses show
that the Zr(NMePh)2 units in Zr(NMePh)2Cl2(THF)2 and rac-
(MBSBI)Zr(NMePh)2 (Figure 3a) are structurally similar to the
Zr{PhN(CH2)3NPh} units in 1 and 3c, with approximateC2

symmetry, large C(Ph)-N- -N-C(Ph) torsion angles (155.5° and
152.8°, respectively), and placement of the two N-phenyl groups
on opposite sides of the N-Zr-N plane. However,meso-
(MBSBI)Zr(NMePh)2 can form because the nonchelated Zr-
NMePh ligands can rotate to relieve steric crowding between
the N-phenyl and indenyl groups on the crowded side of the
metallocene, as illustrated in Figure 3b. Similarly, the reaction

of 2c with the 0.5 equiv of theethylene-diamide complex
{Zr(PhNCH2CH2NPh)Cl(THF)}2(µ-Cl)2 yields a 2/1 mixture of
rac- and meso-(MBSBI)Zr(PhNCH2CH2NPh).11 X-ray crystal-
lographic studies show that the ZrNCH2CH2N chelate rings in
rac- andmeso-(MBSBI)Zr(PhNCH2CH2NPh) (Figure 3c,d) adopt
envelope conformations in which one N-Ph group lies in the
N-Zr-N plane, which allows themesoisomer to form.

We previously reported thatrac-(SBI)Zr(NMe2)2 andrac-(EBI)-
Zr(NMe2)2 (EBI ) 1,2-ethylenebis(indenyl)) are quantitatively
converted torac-(SBI)ZrCl2 (4a) andrac-(EBI)ZrCl2 by reaction
with Me3SiCl.4 Similarly, 3a is cleanly converted to4a (100%
NMR) by reaction with Me3SiCl in CD2Cl2 at 60°C (sealed tube,
Scheme 1). In contrast, no reaction is observed between3d and
Me3SiCl in CD2Cl2 (100°C, 30 h, sealed tube). However,3b-d
react cleanly with HCl in Et2O or toluene at-78 °C to afford
the correspondingrac zirconocene dichlorides4b-d in high yield
(Scheme 1).rac-(MBSBI)ZrCl2 (4c) was isolated in 70% yield
(vs 1) by initial generation of3c from 1 and 2c, filtration to
remove the LiCl coproduct, treatment with HCl at-78 °C,
removal of the solvent, and washing with benzene to remove the
PhNH(CH2)3NHPh coproduct. Dichlorides4b and 4d were
isolated in 76% and 51% yield, respectively (vs ZrCl4), by in
situ generation of1 from ZrCl4 and Li2[PhN(CH2)3NPh], treatment
with the appropriate Li2[SBI′](Et2O) reagent, filtration to remove
the LiCl coproduct, treatment with HCl at-78 °C, and filtration.
The lower isolated yield for4d is due to its high solubility.

These results show that reaction of the easily accessible
propylene-diamide complex Zr{PhN(CH2)3NPh}Cl2(THF)2 (1)
with Li 2[SBI′](Et2O) reagents provides a general, high-yield,
stereoselective route torac-(SBI′)Zr{PhN(CH2)3NPh} complexes,
including those with 2-Me substituents. These zirconocene-
diamide complexes, which can be isolated or used in situ, can be
converted to the correspondingrac-(SBI′)ZrCl2 complexes by
reaction with Me3SiCl (for 3a) or HCl (for 3b-d). The confor-
mational properties of the PhN(CH2)3NPh2- ligand are the key
to the stereoselectivity in these reactions and this method should
be applicable to a wide variety ofansa-metallocenes. Work is in
progress to extend this approach to the enantioselective synthesis
of ansa-metallocenes using chiral diamide ligands.
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Figure 2. Molecular structure ofrac-(MBSBI)Zr{PhN(CH2)3NPh} (3c).
Bond distances (Å): Zr-N(1) 2.073(2), Zr-N(2) 2.122(2). Torsion angles
(deg): N(1)-Zr-N(2)-C(10)-141.9(3), N(2)-Zr-N(1)-C(6)-131.2(3).

Figure 3. Schematic drawings of the molecular structures ofrac- and
meso-(MBSBI)Zr(NMePh)2 (a, b) andrac- andmeso-(MBSBI)Zr(PhCH2-
CH2NPh) (c, d) based on X-ray crystallographic analyses (R4 and R5 )
benzo).
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